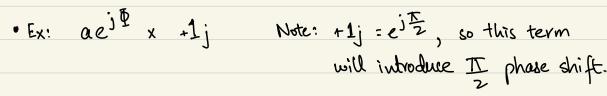
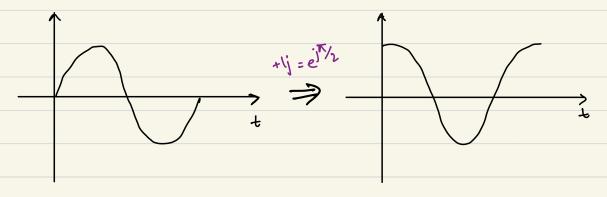
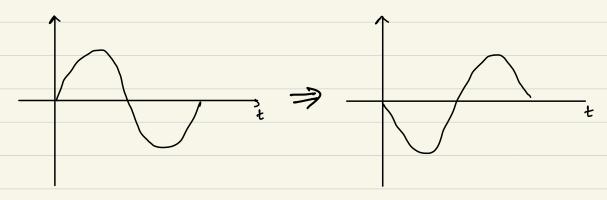

Today's Agenda: Basics of Wireless					
 Wireless Signals as EM waves Modulations SNR/SINR, BER Capacity and Data rate Zigzag Channel Hidden Terminal Decoding Collisions 					
	•				
· · · · · · · · · · · · · · · · · · ·	•				
	•				
	•				

Wireless Signals as Waves


Wireless signals are electromagnetic waves traveling at the speed of light

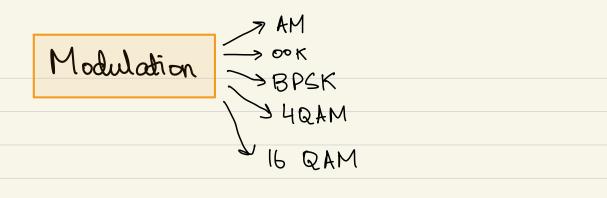


Phase of a wave:


- Phase describes the position of a point within a repeating pattern of a wave at a specific point in time.
- It tells you where a particular point on the wave is in relation to a reference point, often the starting point of a wave.
- · Expressed in terms of angles and is a cyclic quantity
 - 0 360 degrees or 0 2pi radians

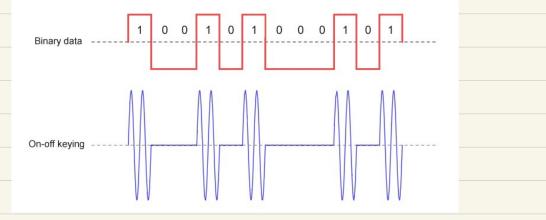
· Blue wave · Driginal wave at time (t=0) . Red wave : wave at a later time (t = t1) . O: phase diff. expressed in angles (degrees or road)

• Ex:
$$ae^{j\Phi}x$$
-l Note: $-1=e^{j\pi}$

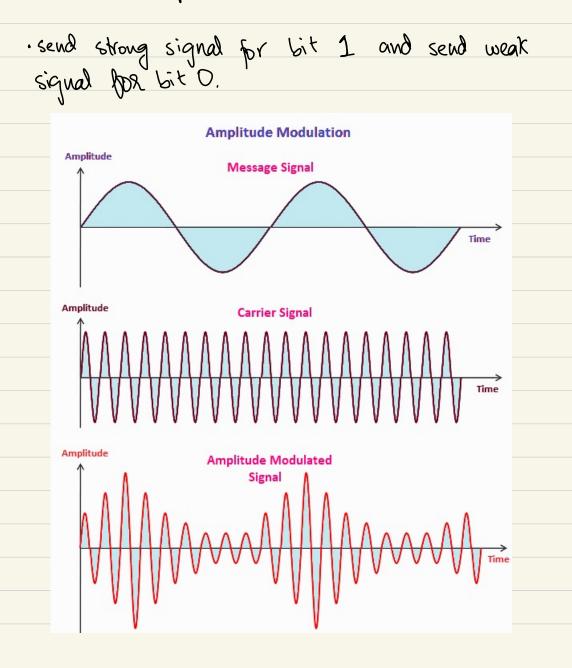


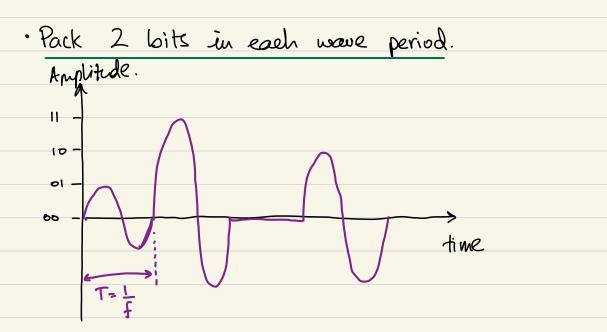
WIFI Bands
$$\rightarrow$$
 Almost all WiFi (802.11) deviced
use 2.4 GHz or 5 GHz frequency.
i) 2.4 GHz (2.4 × 10⁹ Hz)
 $\lambda = \frac{c}{f} = \frac{2.0 \times 10^{8}}{2.4 \times 10^{9}} = 12 \text{ cm}$
 $z = 5 \text{ GHz}$ (5.0 × 10⁹ Hz).
 $\lambda = \frac{2.0 \times 10^{8}}{5.0 \times 10^{9}} = 6 \text{ cm}.$
 5.0×10^{9}
Trade Spf between high frequency vs
low frequency.

High frequency signals have a greater data rate, but at the cost of lower range because high frequency signals attenuate at a greater rate when composed with low freq. signals.

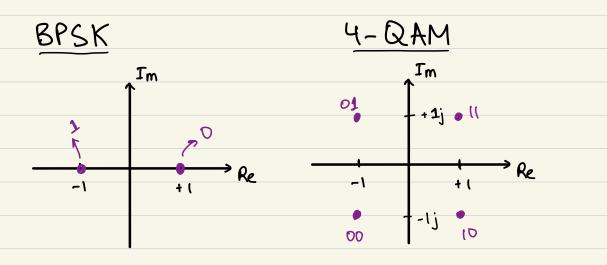

Cellular Bands. -> Assigned by government (Spectrum Allocation) >> 700 MH2 >> 2100 MH2 >> 3500 MH2

Increase Range of network coverage for Denser networks i.e more cell towers per unit area Transmit with more prower from each cell tower.

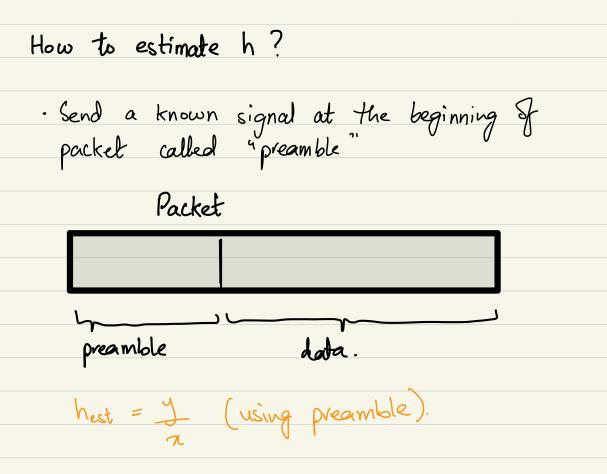




Example: on- 21 - Keying. P bit 1: send a wave Lo bit 2: do not send a volue.



Example: Amplitude Modulation.


Likewise, more and more bits can be packed in a Single time period T.
Li However, there is a tooleoff. More bits per T reduces the amplitude difference between connecutive bit values which can cause demodulation errors at the receiver.

Channel

$$T_{x}$$
,
 T_{y}

· channel is the physical medium through which wiveless signals travel.

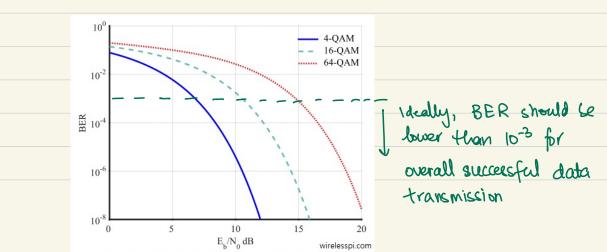
· Coherence time: Time interval during which channel's characterictics remain relatively unchanged. · Coherence frequency: Frequency range within which the channel's characteristics remain velatively constant.

SNR/SINR

y = hx + nnoise.

$$SNR dB = 10 \log_{10}(SNR).$$

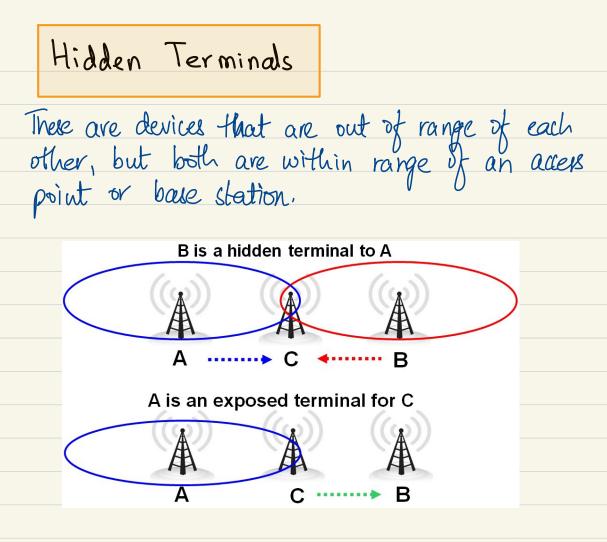
10 dB	ړ	10 times	
20 d B	2	100 times	
30 d B	2	1000 times	
3 dB	\gtrsim	2 times	
6 d B	25	4 times	


· Bad / low SNR L> signal is weak → lhl ≈ 0 h) ≈ 0 L> interference. (y=hx+n+i) interference e

 \cdot SINR = $|hx|^2$ In+il² « noise + interferance

· How does receiver find the noise power or noise + interferance power; -> Estimate these when the receiver is idle and no one is transmitting to receiver.

BER : Bit Error Rate * of bits wrong · BER = total bits sent. Tx/sender Rx / Receiver. - 0 0 0 0 0 0 0 0 0 0 bits sent bits received compare. K


· BER should be low for successful transmission

Data Rate vs Capacity · Data Rate: How many bits can I send per second. 1 Glops: 10° bits/s 100 Mlops: 10° bits/s Date Rate = bits per symbol x symbol per second modulation hardware scheme. determine determined Ex: BPSK : 1 bit/symbol -> 1 Mbps 10^b symbol /S 2 Mbps 4QAM: 2 bit/symbol

· Capacity: Maximum achievable data rate of a communication channel

 $C = B \log (1 + SNR)$ bandwidth

- · Hidden terminals cannot directly sense each other's transmissions, which results in collisions · Medium Access Protocols.

-> Used to manage how devices share wireless medium/ channel and avoid such issues. e.g CSMA/CA, RTS/CTS

Zig Zag Paper

-> Protocol designed as a solution to hidden terminds.

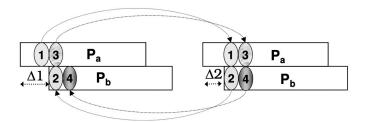


Figure 2: ZigZag Decoding. ZigZag decodes first chunk 1 in the first collision, which is interference free. It subtracts chunk 1 from the second collision to decode chunk 2, which it then subtract from the first collision to decode chunk 3, etc.